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Inhomogeneous distribution of a rigid fibre
undergoing rectilinear flow between parallel

walls at high Péclet numbers
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(Received 5 September 2008 and in revised form 29 January 2009)

We use slender-body theory to simulate a rigid fibre within simple shear flow and
parabolic flow at zero Reynolds number and high Péclet numbers (weak Brownian
motion). Hydrodynamic interactions of bulk fibres with the bounding walls are
included using previously developed methods (Harlen, Sundararajakumar & Koch, J.
Fluid Mech., vol. 388, 1999, pp. 355–388; Butler & Shaqfeh, J. Fluid Mech., vol. 468,
2002, pp. 205–237). We also extend a previous analytic theory (Park, Bricker & Butler,
Phys. Rev. E, vol. 76, 2007, 04081) predicting the centre-of-mass distribution of rigid
fibre suspensions undergoing rectilinear flow near a wall to compare the steady and
transient distributions. The distributions obtained by the simulation and theory are
in good agreement at sufficiently high shear rates, validating approximations made
in the theory which predicts a net migration of the rigid fibres away from the walls
due to a hydrodynamic lift force. The effect of the inhomogeneous distribution on
the effective stress is also investigated.

1. Introduction
The dynamic behaviour and rheological properties of macromolecules or particles

suspended in a confined domain can differ from those of unbounded solutions and
suspensions due to interactions between the solid boundaries and the bulk particles.
These interactions can include those arising from excluded volume constraints and
colloidal forces such as electrostatic and van der Waals interactions, and they can also
arise from hydrodynamic forces (Agarwal, Dutta & Mashelkar 1994). For example,
simulations and theories have clarified that hydrodynamic interaction increases the
depletion layer of flexible polymers near bounding walls in shearing flows (Jendrejack
et al. 2004; Ma & Graham 2005; Hernández-Ortiz, de Pablo & Graham 2006; Usta,
Butler & Ladd 2006, 2007; Butler et al. 2007).

The origin of the hydrodynamic lift force generating the enhanced depletion of
flexible polymers near walls was identified using an elastic dumb-bell model (Ma &
Graham 2005). This model indicates that the local shear flow extends the polymer,
generating tension in the chain and a resultant perturbation to the flow field around
the polymer. When in the vicinity of a bounding wall, the no-slip boundary further
modifies the flow perturbation created by the polymer to produce a net velocity away
from the wall. This migration, which has been observed qualitatively in experiments
by Fang, Hu & Larson (2005), has implications for the design and operation of
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microfluidic devices (Stone, Stroock & Ajdari 2004). As one effect, the lift force
hinders adsorption of polyelectrolytes (Hoda & Kumar 2007a , b, 2008).

A recent simulation and subsequent theory indicate that rigid polymers and
Brownian rods within strong shearing flows also migrate away from bounding
walls due to hydrodynamic interactions (Saintillan, Shaqfeh & Darve 2006a; Park,
Bricker & Butler 2007). This result is consistent with experiments on semi-rigid
xanthan molecules in pressure-driven flow, which indicate migration away from a wall
(Ausserre et al. 1991). However, other mechanisms not associated with hydrodynamic
interactions with the bounding wall also alter the depletion layer. Simulations and
models which consider only steric effects predict that sufficiently strong shear enhances
the depletion layer beyond that of the equilibrium distribution (de Pablo, Ottinger &
Rabin 1992; Schiek & Shaqfeh 1995). Also, gradients in the diffusivity, caused by the
coupling of the anisotropic mobility of the centre of mass of a rod and differences in
the shear rate across a channel with pressure-driven flow, shift the distribution closer
to the walls (Nitsche & Hinch 1997; Schiek & Shaqfeh 1997).

A previous theoretical investigation (Nitsche & Roy 1996) found that hydrodynamic
interactions acting upon a Brownian fibre sheared near a wall have little effect on the
depletion layer. That theory considered the limit of weak shear flows only, however. At
high rates of shear, the kinetic theory of Park et al. (2007) predicts migration arising
from three mechanisms, two of them related to hydrodynamic interactions. The
third corresponds to the gradient mechanism identified by Nitsche & Hinch (1997)
and Schiek & Shaqfeh (1997) that does not depend upon far-field hydrodynamic
interactions and moves the rigid fibres closer to the bounding walls on average.
Mechanisms which screen hydrodynamic interactions between the fibre and wall
would render this term dominant. Screening can occur for fibres with very high
aspect ratio and for a separation between bounding walls which is of the length of
the fibre or smaller.

The stronger of the two hydrodynamic mechanisms identified by Park et al. (2007)
is similar to the mechanism described for flexible polymers. The inability of the rigid
fibre to deform with the fluid creates an additional flow field which is reflected by a
bounding wall to create a transverse motion. This transverse motion can occur towards
or away from the bounding wall, depending upon the instantaneous orientation of
the rod. The centre of mass of a force and torque-free rod tumbling in a Jeffery orbit
due to an imposed shear flow will oscillate transverse to the wall, since the symmetry
of the orientation distribution is preserved. This coupling of a shearing flow and a
transverse motion has been noted and investigated in past theories and simulations
for rod-like particles (Yang & Leal 1984), for prolate spheroids (Hsu & Ganatos
1976; Olla 1999) and even for oblate spheroids (Mody & King 2005). Producing
a net migration requires breaking the symmetry of the orientation distribution for
the particle tumbling in the shear flow. Kinetic theory predicts that weak Brownian
motion alters the rotational dynamics of a rigid fibre in shear flow (Leal & Hinch
1971; Stover, Koch & Cohen 1992; Hijazi & Zoaeter 2002), changing the orientation
distribution in a manner that results in a net migration of the fibre away from the wall.

The weaker of the two hydrodynamic mechanisms of migration predicted by the
kinetic theory of Park et al. (2007) does not have an analogue within the theory for
the flexible dumb-bell. This secondary migration arises from a hydrodynamic coupling
of the Brownian rotation of the rigid fibre and bounding wall. A particle with an
isotropic orientation distribution fluctuates transverse to the wall in response to this
interaction, but the shear flow creates a preferential orientation and a consequent lift
away from the wall.
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Figure 1. A rigid fibre sheared at a rate γ̇ between two parallel walls separated by a gap
of H . The centre-of-mass vector rα and the orientation vector pα describe the configuration
of the fibre. The aspect ratio A is the ratio of length L to diameter d , and the coordinate s
defines positions along the fibre axis (s = 0 at the centre of mass). Flow is in the x-direction,
and the gradient is in the y-direction.

While the kinetic theory qualitatively predicts the migration observed in the
simulations of Saintillan et al. (2006a), the theory contains multiple approximations.
These include solving for the orientation distribution separate from the centre of
mass and an evaluation of the hydrodynamic interaction with the wall that lacks
rigour in favour of simplicity. Excluded volume interactions of the rigid fibre with
the wall were also neglected in the theory. Just as Brownian dynamics simulations
have been performed to test kinetic theories for the migration of flexible polymers
(Hernández-Ortiz et al. 2006; Hoda & Kumar 2007 b), we test the theory of Park
et al. (2007) by performing simulations with and without hydrodynamic interactions
of a rigid fibre with weak Brownian motion suspended in rectilinear flows between
two walls. Comparisons between simulations demonstrate that the depletion layer
is affected by hydrodynamics only for very large rates of shear; at moderate rates
of shear at which the hydrodynamic mechanism for migration is relatively weak,
the thickness of the depletion layer is controlled by excluded volume interactions of
the rod with the bounding walls. The distributions obtained by the simulation with
hydrodynamic interactions are in good agreement with those predicted by the theory
of Park et al. (2007) for sufficiently high rates of shear.

The algorithm for performing the simulations is described in § 2. We extend the
previous theory for predicting the centre-of-mass distribution at steady state for a
rigid fibre under shear flow near a wall to a fully analytic expression for shear flow
between two bounding walls. The time evolution of the distribution is also calculated
from the theory in § 3. Results from simulations and the theory are compared for
the evolution of the distribution in simple shear flow and the steady distribution in
parabolic flows in § 4. Additional calculations investigate the effect of the migration
on the bulk stress in § 5, and conclusions are drawn in § 6.

2. Simulation
We simulate a rigid fibre confined between two bounding walls as shown in

figure 1. To include hydrodynamic interactions of the bulk particle with bounding
walls, we represent each wall as a periodic array of slender bodies and calculate
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interactions between all particles using methods based upon previous work (Harlen,
Sundararajakumar & Koch 1999; Butler & Shaqfeh 2002). This approach differs
from calculation of the Green’s function for two planar walls of infinite extent
(Liron & Mochon 1976; Staben, Zinchenko & Davis 2003) as done by Saintillan
et al. (2006a). However, representing the walls by closely packed arrays of particles
has been used with success in Stokesian dynamics (Nott & Brady 1994; Singh & Nott
2000; Bricker & Butler 2007), and the method can be extended to perform simulations
of non-dilute systems, which is a focus of ongoing work. The equations governing the
motion of the rigid fibres are derived from slender-body theory as indicated in § 2.1,
and additional details of the simulation method are given in § 2.2.

2.1. Governing equations

In the absence of inertia and for a Newtonian suspending fluid, the total sum of
external forces Fα and torques Tα on a fibre α balances the hydrodynamic forces
FH

α and torques TH
α ,

Fα + FH
α = 0 and Tα + TH

α = 0, (2.1)

where the hydrodynamic forces and torques are calculated using slender-body theory
at leading order (Batchelor 1970; Cox 1970). Solving for the centre-of-mass velocity
for a rigid fibre α gives

ṙα =
1

L

∫ L/2

−L/2

uα(sα) dsα + ξ−1(I + pα pα) · Fα, (2.2)

and the explicit expression for rotational velocity is

ṗα =
12

L3
(I − pα pα) ·

∫ L/2

−L/2

uα(sα)sα dsα +
12ξ−1

L3
Tα × pα, (2.3)

where I is the identity matrix; ξ−1 = ln(2A)/4πμL; and μ is the fluid viscosity. The
total force and torque acting on the fibre are given by moments of the integrated line
force density f α(sα),

Fα =

∫ L/2

−L/2

f α(sα) dsα and Tα =

∫ L/2

−L/2

sα pα × f α(sα) dsα. (2.4)

The fluid velocity uα(sα) on a fibre α is the sum of disturbance velocities induced
by the force distribution acting on all other fibres β ,

uα(sα) =

N∑
β=1

∫ L/2

−L/2

G(sα, sβ) · f β(sβ) dsβ, (2.5)

where G(sα, sβ) is the Green’s function for periodic point forces on the fluid and N is
the total number of fibres in the system. The coordinate sα is the point of evaluation
on fibre α of the velocity disturbance induced by the line force density at point sβ

on fibre β . In this simulation, the Green’s function given by Beenakker (1986), which
is the Ewald-summed expression of the Green’s function by Rotne & Prager (1969)
in a periodic system, is used. For the special case of α = β , the Green’s function for
free space must be subtracted from G(sα, sβ). In the event that α = β and sα = sβ , the
limiting form given by Beenakker (1986) is used.

For dynamic simulations of suspensions of hydrodynamically interacting rigid
fibres, the solution of Hasimoto (1959) for the periodic Oseen–Burger tensor has
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Figure 2. Arrays of closely packed fibres form the walls in a periodic boundary system of
dimensions bx , by and bz. (a) A view from the vorticity-gradient zy-plane; (b) view of simple
shear flow; and (c) parabolic flow from the flow-gradient xy-plane.

been widely used (Harlen et al. 1999; Butler & Shaqfeh 2002; Saintillan, Shaqfeh &
Darve 2006b). However, this results in a mobility tensor which sometimes lacks the
property of being positive definite when a pair of fibres are in close proximity. The
solution of Beenakker (1986) ensures a positive definite matrix for any configuration
of the interacting particles regardless of separation distance, so it has been applied
to these simulations due to the presence of closely packed arrays of fibres which
form the walls. Tornberg & Gustavsson (2006) also used Beenakker’s (1986) solution
in the simulation of sedimenting rigid fibres. Comparing the velocity disturbance
generated by a force on a fibre by integrating Oseen–Burger tensor and Beenakker’s
(1986) solution along the length of the rod demonstrates that the error is negligible
at a distance of three times the fibre diameter. For the specific case of a force
acting perpendicular to a rod centred at the origin, the velocity disturbances in the
perpendicular direction agree within 5 % at a distance of two diameters for a point
located on the plane lying perpendicular to the rod and centred on the rod.

To facilitate numerical calculation, the force distribution fβ(sβ) is linearized (Harlen
et al. 1999; Butler & Shaqfeh 2002),

f β(sβ) =
1

L
Fβ +

12sβ

L3
[Tβ × pβ + Sβ pβ], (2.6)

where the stresslet coefficient is given by

Sβ = − ξ

2L

∫ L/2

−L/2

sβ pβ · uβ(sβ) dsβ. (2.7)

The relation between the stresslet coefficient and the particle stress is discussed in § 5.
Subsequent substitutions of (2.5) with (2.6) into (2.2) and (2.3) gives a linear set of
equations relating forces and motions of the fibres.

We identify two types of particles in this simulation: wall fibres and a bulk fibre.
Closely packed arrays of the wall fibres form the two planar boundaries as shown
in figure 2. The bulk fibre is contained in the space between the upper wall and the
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bottom wall in a periodic box, but not in the space between the wall and its adjacent
image wall.

For the wall fibres, the velocities

vW = (̇rW ṗW ) (2.8)

are specified, and we solve for the forces

FW = (FW TW × pW ). (2.9)

This resistance problem is simultaneously solved with the equations for the stresslet
coefficients on the wall fibres SW and bulk fibre SB ,

⎛
⎜⎝

FW

SW

SB

⎞
⎟⎠ =

⎛
⎜⎝

MV F
WW MV S

WW MV S
WB

MEF
WW MES

WW MES
WB

MEF
BW MES

BW MES
BB

⎞
⎟⎠

−1

·

⎡
⎢⎣

⎛
⎜⎝

vW

0W

0B

⎞
⎟⎠ −

⎛
⎜⎝

MV F
WB

MEF
WB

MEF
BB

⎞
⎟⎠ · FB

⎤
⎥⎦ , (2.10)

where the forces on the bulk fibre

FB =
(

FB TB × pB

)
(2.11)

affect the forces on the wall fibres necessary to maintain their steady motion. The
tensors M in (2.10) relate the motion and forces. The superscripts represent the type
of motion and force which are related by the matrix, and the subscripts designate the
fibres which correspond to related motion and force. For example, MV F

WB represents
the tensor which relates the force and torque on the bulk fibre to the motions of the
wall fibre. Each component of a matrix M is a double integral of the Green’s function
in (2.5) over two fibres (Butler & Shaqfeh 2002). Stresslet coefficients on each fibre
are designated by the vector S. Since the fluid motion is generated by moving the
wall particles, the rates of strain corresponding to an imposed flow have been set to
zero in (2.10); this does not mean that the fibres experience no straining flow but that
the straining flow is generated by the relative motion of the particles only. Using the
results from (2.10), the motion of the bulk fibre confined between the two parallel
walls is given by

vB =

(
ṙB

ṗB

)
= P ·

⎛
⎝vW

0W

0B

⎞
⎠ + Q · FB, (2.12)

where P represents the response of the motion of the bulk fibre to the shear flow,

P =
(
MV F

BW MV S
BW MV S

BB

)
·

⎛
⎜⎝

MV F
WW MV S

WW MV S
WB

MEF
WW MES

WW MES
WB

MEF
BW MES

BW MES
BB

⎞
⎟⎠

−1

, (2.13)

and Q is the mobility of the bulk rod,

Q = −P ·

⎛
⎜⎝

MV F
WB

MEF
WB

MEF
BB

⎞
⎟⎠ + MV F

BB . (2.14)
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The Brownian forces and torques acting on the bulk fibre can be obtained from
the inverse of the mobility matrix Q by satisfying the fluctuation dissipation theorem,

FB =

√
2kBT

�t
B · W, (2.15)

where

B · BT = Q−1; (2.16)

the thermal energy is kBT ; and the vector W contains random numbers generated
from a uniform distribution of zero mean and a variance of one. Cholesky
decomposition is used to evaluate B as explained by Butler & Shaqfeh (2005)
and Saintillan, Shaqfeh & Darve (2006c).

2.2. Simulation details

This simulation method can be used to study fibres flowing at any value of the
Péclet number, but simulations are performed at relatively high values at which the
phenomena of interest are predicted to strongly impact the distribution of the fibres.
We use the given algorithm to simulate the dynamics of a rigid fibre having an aspect
ratio of A = 10 for all cases. Likewise, the simulations calculate the specific case of a
wall separation of H = 6L, and one (bulk) fibre is simulated at a time, with averages
performed over multiple runs and blocks of time to generate distributions as stated
in § 4. The bounding walls are constructed of 2bxbz/Ld fibres of aspect ratio 10. The
mobility matrices, consisting of dual integrals over the particle lengths, are generated
using a five-point and six-point Gaussian quadrature for the cases of simple shear
and parabolic flow, respectively.

To generate simple shear flow, the wall particles are assigned a velocity vx in the
x-direction but with opposite signs for particles in the ‘top’ and ‘bottom’ walls; all
other velocities are set to zero. For a simple shear flow, the velocity vx = ±Hγ̇ /2
generates a shear flow of γ̇ . Both walls translate in the positive x-direction at the
same velocity of Hγ̇ /3 to produce a parabolic flow with a local shear rate of

γ̇ (y) = 2γ̇

(
2y

H
− 1

)
, (2.17)

where γ̇ is the mean shear rate. In both cases the result corresponds closely to
the desired, theoretical profiles, and there is no net flow through the yz-plane,
since the periodic sums were constructed to ensure zero net flow through any plane.
The flow profiles, shown in figure 3, were generated using (2.5) with the linearized
force distribution in (2.6) and in the absence of a bulk particle. In addition, we
confirmed that fluid does not flow perpendicular to the walls.

Lubrication interactions dominate when the bulk particle approaches within one
fibre diameter of the wall. This short-range interaction is added directly to the resis-
tance matrix, using methods identical to those of Butler & Shaqfeh (2002). The
interaction itself depends upon the relative orientation of the rod with respect to
the wall and is evaluated using the method of Claeys & Brady (1989). The lubrication
interaction is supplemented by a short-range repulsive force,

f R = ±0.01ξ γ̇
exp (−10h/L)

1 − exp (−10h/L)
ŷ, (2.18)

where h is the closest distance between the fibre and the bounding wall; the force
acts to push the fibre away from the wall; and ŷ is the unit vector in the y-direction.
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Figure 3. Simulation results (broken lines) of (a) the velocity profile in the x-direction (units
of Lγ̇ ) and (b) the local shear rate γ̇ (y) (units of γ̇ ) of the shear flow generated by moving
walls as functions of distance from the bottom wall, y/L. Fibres have an aspect ratio of
A = 10, and the walls are separated by a gap of H = 6L in a periodic box of dimensions
bx :by :bz = 3L : 8L : 3L for simple shear flow and bx :by :bz = 3L : 12L : 3L for parabolic flow.
Theoretical values are plotted as solid lines.

When evaluating the separation between the bulk fibre and the wall, the end tip of
the fibre is regarded as a hard sphere having the same diameter as the fibre. This
repulsive force is included with the forces and torques acting on the bulk fibre and
the wall fibres. Simulation results confirm that the particle does not cross the wall.
We also tested other algorithms for maintaining the excluded volume (de Pablo et al.
1992; Hijazi & Khater 2001), but the differences in distributions were small.

To distinguish the effects of the hydrodynamic and excluded volume interactions on
the depletion layer, simulations are also performed in the absence of hydrodynamic
interactions with the walls. These simulations are performed using (2.2) and (2.3) with
the velocity uB (sB) replaced by the theoretical expression for simple shear flow or
parabolic flow as appropriate. The Brownian forces and torques are calculated using
the fluctuation dissipation theorem but with the mobility of a single rod suspended
in an infinite fluid. The same repulsive force given in (2.18) prevents the fibre from
crossing the wall.

Equation (2.12) is integrated using the modified midpoint method; this method
integrates the trajectories of the stochastic motion accurately at first order without
requiring an explicit evaluation of the divergence of the mobility (Fixman 1978;
Grassia, Hinch & Nitsche 1995; Morse 2004). The time step for integrating positions

is set to 0.001γ̇
−1

. Note that many of the submatrices in (2.13) need to be calculated
only once. The self-mobilities and any lubrication interactions for the bulk fibre are
updated at each time step, but the long-range hydrodynamic interactions between the

bulk particle and wall particles are updated less frequently at intervals of 0.05γ̇
−1

.
Tests on this integration scheme demonstrated convergence of the results while greatly
decreasing the computational expense of the calculations.

3. Extended theory for centre-of-mass distribution
We extend the previous theory (Park et al. 2007) predicting the centre-of-mass

distribution of rigid fibres under shear flows near a single wall to a fully analytic
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expression for the steady distribution between two bounding walls in § 3.1.
Additionally, a solution for the time evolution of the distribution is presented in § 3.2.

As in the original theory of Park et al. (2007), multiple approximations are made. To
enable solution of the conservation equation for distribution function, the orientation
distribution is solved independent of the centre-of-mass distribution, and restrictions
on the allowable orientation due to excluded volume for rigid fibres near the walls
are ignored. Also, development of a manageable expression for the migration velocity
requires an approximate evaluation of the Green’s function. Each simplification is
discussed in turn.

3.1. Steady-state distribution

The conservation equation for the probability distribution function Ψ (rB, pB, t) is
given by

∂Ψ

∂t
= − ∂

∂rB

· (̇rBΨ ) − (I − pBpB) :
∂

∂pB

(ṗBΨ ) . (3.1)

For the rigid fibre, Ψ is factorized into a product of a centre of mass n and orientation
ψ distribution,

Ψ (rB, pB, t) = n (rB, t) ψ (rB, pB, t) , (3.2)

where n =
∫

Ψ dpB . Integrating (3.1) over the orientation distribution and solving for
the steady state gives

0 = − ∂

∂rB

· (n〈ṙB〉), (3.3)

where the angle brackets 〈 〉 indicate an ensemble average over orientation,
∫

· · · ψ dpB .
Determining n from (3.3) necessitates development of an explicit expression for the

transverse velocity. This expression was derived from slender-body theory by Park
et al. (2007),

ṙy = γ̇ λ(ry)pxpy

(
1 − 3p2

y

)
+ ξ−1(ŷ + pypB) · FB

+
24

L2
ξ−1λ(ry)(3py ŷ − pB) · (TB × pB), (3.4)

where

λ(ry) =
L3

128 ln(2A)

[
1

ry
2

− 1(
ry − H

)2

]
; (3.5)

ṙy is the y-component of rB; and px and py are the x- and y-component of pB

respectively. The unit vector in the y-direction is denoted as ŷ. This expression for
ṙy was derived from (2.2) using (2.4)–(2.7). The evaluation of the Green’s function
in (2.5) requires two approximations to arrive at the result given in (3.4). First, the
proper, two-wall Green’s function of Liron & Mochon (1976) is too complicated to
manipulate analytically and is consequently approximated by a linear superposition of
the Green’s function for a single wall (Blake 1971). Furthermore, the Green’s function
is linearized under the assumption that the rod is far from each of the bounding
walls.

The first term on the right-hand side of (3.4) corresponds to the shear flow
contribution to the transverse motion and matches the result given by Saintillan
et al. (2006a). The Brownian force on the centre of mass results in a fluctuation in
the y-position, but less obvious is the prediction of a transverse velocity due to the
Brownian torque which appears as the third contribution in (3.4).
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The Brownian force and torque in (3.4) are expressed in terms of the distribution
function,

FB = −kBT
∂ ln Ψ

∂rB

and TB × pB = −kBT (I − pBpB) · ∂ ln Ψ

∂pB

. (3.6)

After performing an average of ṙy over the orientation distribution function, the
average transverse velocity of a rigid fibre 〈ṙy〉 is multiplied by n to give the particle
flux as a function of position,

n〈ṙy〉 = nγ̇ λ(ry)
[
〈pxpy〉 − 3〈pxpy

3〉
]

− kBT

ξ

[(
1 + 〈p2

y〉
) ∂n

∂ry

+ n
∂〈p2

y〉
∂y

]

− 72n
kBT

ξL2
λ(ry)

(
3〈p2

y〉 − 1
)
. (3.7)

Integrating (3.3), using (3.7) and the condition of no particle flux through the
bounding walls (n〈ṙy〉 = 0), gives an equation for the steady-state distribution,

∂ ln n

∂ry

=
λ(ry)〈K〉 + 〈Γ 〉

〈D∗〉 . (3.8)

Here, 〈K〉 contains the contributions to migration due to hydrodynamic interaction
with the bounding walls,

〈K〉 =

[
〈pxpy〉 − 3〈pxpy

3〉 +
72

Pe

(
1 − 3〈p2

y〉
)]

γ̇ , (3.9)

where the Péclet number Pe is defined as

Pe =
γ̇ L2

DT

=
γ̇ L2ξ

kBT
(3.10)

and DT is the translational diffusivity of a slender body in an infinite fluid (Doi &
Edwards 1986). The quantity 〈pxpy〉 − 3〈pxpy

3〉 is the contribution to transverse
motion from the imposed shear flow due to inclusion of the stresslet coefficient, and
72(1 − 3〈p2

y〉)/Pe is the contribution arising from the Brownian torque. At Pe = 0 or
Pe = ∞, where the orientation distribution is symmetric, 〈K〉 becomes 0. However, we
will show that the asymmetric orientation distribution at high values of Pe results in
a positive value for 〈K〉 and a migration away from the bounding walls. The term
〈D∗〉 represents the diffusion component acting perpendicular to the wall,

〈D∗〉 =
1 + 〈py

2〉
Pe

L2γ̇ , (3.11)

and 〈Γ 〉 corresponds to the contribution arising from the anisotropic diffusivity of a
rigid polymer,

〈Γ 〉 = − ∂

∂y

[
〈py

2〉
Pe

]
L2γ̇ , (3.12)

that was previously identified by Nitsche & Hinch (1997) and Schiek & Shaqfeh
(1997).

Park et al. (2007) calculated the ensemble averages of orientation moments needed
within (3.8) by numerically solving the governing equation for the orientation
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distribution. The equation is derived by applying (3.2) to (3.1) at steady state,

n (I − pBpB) :
∂

∂pB

(ṗBψ) = − ∂

∂rB

· (nṙBψ) . (3.13)

Approximating ṙBψ by 〈ṙB〉 in (3.13) and applying (3.3) gives

(I − pBpB) :
∂

∂pB

(ṗBψ) = 0. (3.14)

Equation (3.14) assumes that the orientation distribution equilibrates much faster
than particles migrate or diffuse across streamlines.

A further assumption that rotation is not influenced by hydrodynamic or steric
interactions with the bounding walls gives a position-independent expression for the
rotational velocity,

ṗB = γ̇ py(x̂ − pxpB) − 12

ξL2
(I − pBpB) · ∂ ln ψ

∂pB

, (3.15)

where x̂ is a unit vector in x-direction. Replacing ṗB in (3.14) with (3.15) and
simplifying gives

(I − pBpB) :
∂2ψ

∂pB∂pB

= Per (I − pBpB) :
∂

∂pB

· [py (x̂ − pxpB) ψ], (3.16)

where Per is the rotary Péclet number defined as

Per =
γ̇

DR

=
γ̇ ξL2

12kBT
=

Pe

12
(3.17)

and DR is the rotational diffusivity of a slender body in an unbounded fluid (Doi &
Edwards 1986).

Numerical solution of (3.16) at high values of Per gives the orientation moments
shown in figure 4. Our numerical solution was obtained from a series of Brownian
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Figure 5. The steady-state centre-of-mass distributions n
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)
of a rigid fibre predicted by

(3.18) as functions of distance from a wall, ry/L, with A = 10 and (a) H = 6L and (b) H = 10L
in simple shear flow.

dynamics simulations for a single fibre in an infinite fluid using the algorithm of
Cobb & Butler (2005). The scalings with Per of the orientation moments shown in
figure 4 agree closely with those derived for slender bodies in shear at high Per (Leal
& Hinch 1971; Hinch & Leal 1972; Brenner 1974). Following the approach of Chen
& Koch (1996), the coefficients of the scalings are determined from a best fit to the
numerical data over the range of 102 � Per � 4 × 104. Although we fit a wider range
of Per than that fitted by (Chen & Koch 1996) (102 � Per � 103), the reported
coefficients for the orientation moments 〈pxpy〉 and 〈p2

xp
2
y〉 match. Agreement was

also found between the numerical data produced by the Brownian dynamics algorithm
and calculations for Per � 103 by Chen & Jiang (1999) and for 0 < Per � 103 by
Asokan, Ramamohan & Kumaran (2002). The relationships determined from the
data in figure 4 are used within (3.8), which is then integrated for the case of simple
shear with 〈Γ 〉 = 0 to give

n(ry) = C exp

[
HL3

128 ln(2A)ry(ry − H )

〈K〉
〈D∗〉

]
, (3.18)

where the normalization constant C is determined so that
∫

n dry = 1. The values of
〈D∗〉 and 〈K〉 are given by

〈D∗〉 = [Pe−1 + 0.94Pe−4/3]L2γ̇ (3.19)

and

〈K〉 = [0.82Pe−1/3 + 42Pe−1 − 200Pe−4/3]γ̇ , (3.20)

where the correlations for the orientation moments have been used. Note that all Per

have been converted to Pe using (3.17). Equation (3.18) is a fully analytic expression
for simple shear between two bounding walls which corresponds to a numerical result
given by Park et al. (2007) for a single bounding wall with simple shear.

Setting A = 10, the steady-state centre-of-mass distributions between two parallel
walls under simple shear flows for various Pe � 1.2 × 103 are calculated using (3.18);
the results are displayed in figure 5 for H = 6L and 10L. As mentioned after (3.9),
the symmetry of the orientation distribution is broken, and 〈K〉 is positive. As Pe



Inhomogeneous distribution of a rigid fibre 279

103 104

Pe

105

1

10

L
d 

/ 
L

H = 50L
H = 10L
H = 8L
H = 6L

Figure 6. The steady-state depletion-layer thickness Ld/L of a rigid fibre of aspect ratio
A = 10 predicted by (3.18) as a function of Pe and H in simple shear flow.

increases, the ratio between the migration and the diffusion, 〈K〉/〈D∗〉, increases;
therefore the rigid fibres distribute more strongly towards the centre of the channel.
Comparing the distributions in the wider and narrower channel demonstrates that
reducing the level of confinement increases the depletion layer. The depletion layer Ld ,
defined as the point ry at which n returns to the bulk value, is calculated from (3.18)
and plotted in figure 6 for A = 10 and different values of Pe and H . The increased
hydrodynamic lift associated with increasing the shear rate, to give a higher value of
Pe, generates a larger depletion layer. Furthermore, increasing the channel width while
holding Pe constant extends the depletion layer further into the channel. Though not
plotted, the depletion layer also depends upon the aspect ratio, since the hydrodyn-
amic lift varies as 1/ ln(2A) as seen in (3.4). Consequently, increasing the aspect
ratio reduces the depletion, since the hydrodynamic interaction between the wall
and fibre become screened.

3.2. Time evolution of distribution

The evolution of the centre-of-mass distribution under simple shear flow is obtained
from the time-dependent version of (3.3),

∂n

∂t
= − ∂

∂y
(n〈ṙy〉). (3.21)

Using the formula for average fibre flux derived in (3.7) with the orientation moments
obtained in figure 4 under the same assumptions made in the previous section, the
governing equation becomes

∂n

∂t
= 〈D∗〉∂2n

∂y2
− 〈K〉 ∂

∂y
[nλ(ry)]. (3.22)

This equation is similar to the evolution equation for the centre-of-mass distribution
of a flexible polymer as derived by Ma & Graham (2005). For the flexible polymers,
〈K〉 is related to the coupling of the restoring spring force and shear flow, which
induces a flow disturbance and migration away from the wall, while 〈K〉 in (3.22)
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Figure 7. The transient centre-of-mass distributions of a rigid fibre predicted by (3.22) as
functions of distance from a wall, ry/L, with A = 10 and H = 6L in simple shear flows of

(a) Pe = 1.2 × 103 and (b) Pe = 4.8 × 104. The units of time t are γ̇ −1.

relates the coupling of the stresslet coefficient, or inability of the fibre to stretch, and
Brownian torque with the shear flow.

Equation (3.22) is solved numerically using the Crank–Nicolson scheme with an
initially uniform distribution and the boundary condition of no flux of the centre
of mass through a wall. The time step �t = 0.01γ̇ −1 and position step �y = 0.001L

give convergent numerical results that are shown in figure 7. At short times, a peak
appears near each wall. As time proceeds, the peak gradually moves towards the
centre and becomes more blunt. At a time comparable to Peγ̇ −1, the peaks from the
two walls merge, and the distribution is fully developed at a time of about 2Peγ̇ −1.
Since the migration velocity due to hydrodynamic interactions is much larger near a
wall, the rigid fibres accumulate near the wall faster than diffusion can smooth the
profile. At higher Pe, migration is much stronger than diffusion; therefore, the peak is
much sharper near the wall for Pe = 4.8 × 104 than Pe = 1.2 × 103. As time passes, the
migration and diffusion of fibres balances, and the distribution reaches steady state.
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An upper bound on the time tS to achieve steady state can be estimated as the time
for a rigid fibre to diffuse from the wall to the centre of the channel,

tS =
H 2/4

2〈D∗〉 ∼ O

(
PeH 2

8L2γ̇

)
, (3.23)

where 〈D∗〉 is approximated using the leading order of Pe−1 in expression (3.19).
This estimate for tS at H = 6L is about twice as large as indicated by the results in
figure 7. Ma & Graham (2005) argued that a flexible polymer needs to diffuse only a
distance equivalent to the depletion width, whereas we find that the distributions at
t = 2Peγ̇ −1 are virtually identical to the steady distributions.

4. Results
Comparisons between the results of the simulation and the theory are presented in

the following sections. We demonstrate that the calculations are in good agreement
for the prediction of the configuration-dependent lift velocity (§ 4.1), the steady and
unsteady distribution in simple shear flow (§ 4.2) and the steady distribution in
parabolic flow (§ 4.3).

4.1. Transverse velocity due to shear flow

The primary mechanism for migration of a rigid fibre in a strong shear flow is the
transverse velocity, coupled with a preferential orientation, resulting from hydro-
dynamic interactions with the wall. An explicit expression for the transverse velocity
due to shear as a function of configuration is embodied in the first term of (3.4),

ṙy = γ̇ λ(ry)pxpy

(
1 − 3p2

y

)
. (4.1)

The response of a fibre to the shear flow can be determined from the simulation
using (2.12) by setting FB to 0 and extracting the y-component of the velocity,

ṙy = ŷ · vB = ŷ · P ·

⎛
⎜⎝

vW

0W

0B

⎞
⎟⎠ . (4.2)

Comparisons between the theoretical analysis (4.1) and computational result (4.2)
appear in figures 8 and 9.

Figure 8 compares the dependence of the transverse velocity on angle φ (the angle
between the x-axis and projection of pB onto the xy-plane as illustrated) for a fibre
fixed at a distance 1L from the wall. The results match qualitatively, with the largest
quantitative discrepancies occurring at orientations corresponding to the secondary
maximum of ṙy . The quantitative differences between the calculations of transverse
velocity also depend upon the position of the fibre and size of the periodic box as
shown in figure 9.

Causes of the quantitative discrepancies clearly include the approximations made
for the evaluation of the Green’s function used in the analytic expression. The theory
overestimates the transverse velocity near the centre due to superimposition of the
effect of the two bounding walls. The theory was derived by linearizing the Green’s
function, assuming that the fibre is far from the wall in comparison to its length; the
increasing discrepancy with the simulated results as the fibre approaches the wall can
be attributed to the breakdown of this assumption. Though the solution given by the
numerical calculation avoids key problems associated with the theoretical evaluation,
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Figure 8. Transverse velocity ṙy due to shear flow as a function of angle φ with pz = 0,
ry = 1.0L and H = 6L. Simulation conditions are the same as those in figure 3(b) with simple
shear flow. The inset illustrates a rigid fibre with an angle φ and pz = 0.

0.5

3 × 10–4

2 × 10–4

1 × 10–4

0

5 × 10–4

4 × 10–4

1.0 1.5 2.0 2.5 3.0

ry/L
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Figure 9. Transverse velocity ṙy due to shear contribution as a function of distance from a
wall, ry/L, for a fixed angle (φ = 3◦ and pz = 0) under a constant shear rate γ̇ . Results are
shown for the theory and three simulations with different periodic dimensions.

the ‘bumpy’ wall formed by the array of fibres and the use of the periodic Green’s
function represent sources of error. With regard to the periodicity, changing the box
height by or ratio between H and by (distance between one wall and neighbouring
image wall) makes little difference, but changing the area of the xz-plane alters the
results as shown in figure 9. Due to periodicity, the transverse velocity predicted by
the simulation is lower than expected for a single rod suspended between two plates
of infinite extent.

We also performed tests on the components of ṙy arising from forces and torques
given in (3.4). Comparisons of these terms with the responses from simulations also
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demonstrate a qualitative match and quantitative differences similar to those observed
for the shear contribution.

4.2. Distributions in simple shear flow

Simulations of the rigid fibre in simple shear flow were performed with a total of
32 different runs for each value of Pe. Initial orientations and positions were chosen
randomly, and positions were sampled during the simulations to produce the centre-
of-mass distribution. The results are compared with the transient and steady-state
distributions predicted in § 3.2.

Figure 10 shows the time evolution of centre-of-mass distribution in simple shear
flow for Pe = 1.2 × 103. The distributions exhibit a maximum near the wall at short
times (figure 10a), with a larger maximum produced by the simulation than the
theory. While the theory predicts attainment of a steady-state distribution around
t = 2Peγ̇ −1, the distribution averaged over times of t = 2500 ∼ 5000γ̇ −1 (figure 10b)
still shows significant variations around the predicted distribution which is at steady
state. The simulated distribution conforms closely to the theoretical distribution at
steady state (figure 10c) when averaged over long times.

The good agreement shown in figure 10 between the results of the theory and
simulation with hydrodynamic interaction is fortuitous. Simulations with and without
hydrodynamic interactions with the walls at Pe = 1.2 × 103 produce a nearly identical
distribution as shown in figure 10(c). The similarity establishes that excluded volume,
which the theory does not consider, is controlling the distribution; the flow strength
at Pe = 1.2 × 103 is too low to generate clear evidence of the hydrodynamic lift. The
results in figure 10(c) are also consistent with previous investigations (de Pablo et al.
1992; Schiek & Shaqfeh 1995) of the changes in the depletion layer due to shear
and excluded volume. We note that the distribution becomes uniform at a value of
about 0.6L ∼ 0.7L, rather than 0.5L, since the end of the rod is a hemisphere that
extends an additional distance of 0.1L beyond 0.5L and since the surface of the wall
is corrugated.

Simulated distributions with hydrodynamic interactions at Pe = 1.2×104 are shown
in figure 11. The transient maximum near the wall appears early in the simulation
results (figure 11a) and agrees with the theoretical prediction within the averaging
errors. The intermediate distribution (figure 11b) fluctuates around the corresponding
theoretical distribution, and the distribution for t > 17 000γ̇ −1 (figure 11c) closely
corresponds to the theoretical steady state.

The steady distribution from simulations without hydrodynamic interaction at
Pe = 1.2 × 104 is plotted in figure 11(c). As compared to the corresponding result
at Pe = 1.2 × 103 in figure 10(c), the depletion layer increases because of the higher
rate of shear but still does not extend beyond ry ≈ 0.65L, where the distribution
becomes uniform. Comparing the distributions from simulations at Pe = 1.2 × 104

with and without hydrodynamic interaction demonstrates that the hydrodynamic
interactions strongly influence the distribution in a manner consistent with the
theoretical prediction.

Figure 12 shows distributions from simulation with hydrodynamic interaction at
Pe = 4.8 × 104. Although the averaging errors are large at short times, the transient
off-centre maximum is detectable in the mean values. The simulation was terminated
at t ∼ Peγ̇ −1 owing to the computational burden, though the distribution is continuing
to develop. The distribution from simulation without hydrodynamic interaction in fig-
ure 12(c) demonstrates a clear difference as compared to the one with hydrodynamic
interaction, indicating again the role played by the hydrodynamic lift force.
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Figure 10. The simulation results (symbols) and theoretical solutions (lines) for the transient
centre-of-mass distributions of a rigid fibre as functions of distance from a wall, ry/L, with

A = 10 and H = 6L in simple shear flows of Pe = 1.2 × 103. Simulation results are averaged
over the time ranges (units of γ̇ −1) as indicated in each sub-part.
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Figure 11. The simulation results (symbols) and theoretical solutions (lines) for the transient
centre-of-mass distributions of a rigid fibre as functions of distance from a wall, ry/L, with

A = 10 and H = 6L in simple shear flows of Pe = 1.2 × 104. Simulation results are averaged
over the time ranges (units of γ̇ −1) as indicated in each sub-part.
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Figure 12. The simulation results (symbols) and theoretical solutions (lines) for the transient
centre-of-mass distributions of a rigid fibre as functions of distance from a wall, ry/L, with

A = 10 and H = 6L in simple shear flows of Pe = 4.8 × 104. Simulation results are averaged
over the time ranges (units of γ̇ −1) as indicated in each sub-part.
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Figure 13. The simulation results with (filled symbols) and without (open symbols)
hydrodynamic interactions for the orientation moment 〈p2

y〉 of a rigid fibre as functions

of distance from a wall, ry/L, with A = 10 and H = 6L. The expected values of 〈p2
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unbounded flow are plotted as lines.

Figure 13 shows the orientation moment 〈p2
y〉 calculated from the simulations as

a function of position and Pe; the orientation moments for unbounded flow, which
are used to make the theoretical prediction, are also shown. The values of 〈p2

y〉
from simulations with and without hydrodynamic interaction have no discernible
differences regardless of distance from the wall, confirming the assumption made
within the theory that hydrodynamic interaction with the walls does not affect the
orientation distribution. The wall affects the orientation through excluded volume
interactions for ry < 0.7L, resulting in substantial differences with the orientation
distribution assumed within the theoretical calculations.

The overshoot of 〈p2
y〉 around 0.65L for finite shear rates is an interesting feature

observable in figure 13. The action of the short-range repulsive force with the wall on
the end of a rod rotating in the shear flow creates a ‘pole-vault-type’ of motion that
displaces the rods, oriented nearly perpendicular to the wall, outwards to give the
enhanced probability of 〈p2

y〉 in the range of ry = 0.6L ∼ 0.7L. Though the effect is
likely caused by the repulsive force, attempts to eliminate the overshoot by altering the
strength and range of the repulsive force were unsuccessful. We note that ‘pole-vault’
motions have been observed by others in simulations (Stover & Cohen 1990; Mody &
King 2005) in the absence of Brownian motion and even in experiments (Holm &
Söderberg 2007).

In the vicinity of a wall (ry � 0.7L), the steric effects control the orientation
distribution, and ignoring the excluded volume within the theory is clearly in error.
However, the neglect of excluded volume has a limited effect on the theoretical
prediction of the centre-of-mass distribution for values of Pe above 1.2 × 103. The
primary reason is that few fibres remain within a distance of 0.7L of the bounding
walls for the higher shear rates due to the hydrodynamic migration away from the
wall.

The qualitative features of the centre-of-mass distributions predicted by the theory
appear in the simulations for Pe = 1.2×104 and 4.8×104: the transient maximum near
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the walls forms at short times, then moves towards the centre while broadening and
disappears at t ∼ Peγ̇ −1. Quantitative comparisons of transient profiles are hindered
by the larger errors in some of the results, but the overall good agreement verifies
that the errors associated with assumptions made in the theory do not have severe
adverse affects on the prediction so long as the depletion layer extends beyond the
range at which the rotation of the rod is hindered by the wall.

4.3. Steady-state distribution in parabolic flow

Simulations were performed under parabolic flow to produce a long-time distribution
for three values of Pe = γ̇ L2/DT as shown in figure 14. The number of runs, initial
configuration and sampling method match those of simulations for simple shear
flow presented in § 4.2. The distributions are compared with the steady distributions
obtained by numerically integrating (3.8). The orientation moments used within (3.8)
depend upon position according to the local shear rate as given by solution to (3.16);
alterations in the orientation due to hydrodynamic interactions or excluded volume
are ignored as was done for the calculations in simple shear.

At Pe = 1.2×103, the theory and simulation with hydrodynamic interaction generate
a similar concentration profile, although the results from simulations are noisy due to
averaging errors. However, the simulation in the absence of hydrodynamic interaction
gives nearly the same result. As in the case of simple shear at a similar Pe, the
hydrodynamic lift has little effect upon the near-wall distribution for this and lower
values of Pe. Clear differences are observed between simulations with and without
hydrodynamic interaction for Pe = 1.2×104 and 4.8×104, indicating that the excluded
volume interactions are not causing the strong depletion near the wall. The good
agreement between the results from the simulation with hydrodynamic interaction
and the theory, which does not consider excluded volume, provides further evidence
that the balance between Brownian diffusion and the hydrodynamic lift primarily
controls the distribution for these higher values of Pe.

The simulations of a Brownian rigid fibre in parabolic flow by Saintillan et al.
(2006a) were performed at Pe = 50 and 300. The authors’ suggestion that the results
were due to a hydrodynamic lift, similar to that identified for flexible polymers,
motivated the kinetic theory of Park et al. (2007). The current results imply that
the depletion observed by Saintillan et al. (2006a) was mostly due to steric effects.
However, the simulations of Saintillan et al. (2006a) were also performed in a wider
channel of H = 8L and without periodic boundaries, where the hydrodynamic lift
would be expected to be stronger.

The results of the simulations without hydrodynamic interactions and theory exhibit
an off-centre maximum due to the gradient in diffusivity induced by the variation
in shear rate across the channel (Nitsche & Hinch 1997; Schiek & Shaqfeh 1997).
Evidence of the off-centre maximum is difficult to detect in the simulations with
interactions due to large averaging errors, though figure 14(b) seems to demonstrate
a reduction in the distribution near the centreline of the channel. The lack of a clear
off-centre maximum may be due in part to the orientation distribution. Figure 15
shows that the gradient in 〈p2

y〉, which causes the migration towards the wall through
the term 〈Γ 〉 in (3.8), is smaller than assumed in the theoretical description. Note that
figure 15 also shows an overshoot in 〈p2

y〉 at ry = 0.6L ∼ 0.7L, similar to the results
for the case of simple shear flow.
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Figure 14. The simulation results (symbols) and theoretical solutions (lines) for the
centre-of-mass distributions of a rigid fibre as functions of distance from a wall, ry/L, with

A = 10 and H = 6L in parabolic flows of (a) Pe = 1.2 × 103, (b) Pe = 1.2 × 104 and (c) Pe =

4.8×104. The time (units of γ̇
−1

) ranges at which the simulation data were taken are indicated
in each sub-part.
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Figure 15. The simulation results with hydrodynamic interactions (symbols) for 〈p2
y〉 of a

rigid fibre as functions of distance from a wall, ry/L, with A = 10 and H = 6L in parabolic

flows of Pe = 1.2 × 103 (◦), Pe = 1.2 × 104(�) and Pe = 4.8 × 104 (	). The corresponding values
for unbounded flow that account for the position-dependent rate of shear are plotted as dashed
lines.

5. Stress calculation
The effective stress of a Newtonian suspension of viscosity μ, sheared at a rate γ̇ ,

is

σ = −P I + 2μE + σ P , (5.1)

where P is the fluid pressure; E is the rate of strain tensor which satisfies
γ̇ = (1/2) (E : E); and σ P is the average contribution due to the presence of the
particle. The stresslet SB for the rigid slender body suspended between the bounding
walls is given by (Batchelor 1971)

SB = −
∫ L/2

−L/2

[
FB (sB) pB − 1

3
I{FB (sB) · pB}

]
sB dsB (5.2)

for an instantaneous configuration. Using the linearized expression for the line force
density FB (sB) on the bulk fibre (2.6) and integrating along the axis gives

SB = − (TB × pB) pB − SB

(
pBpB − 1

3
I

)
. (5.3)

Note that we ignore the direct contribution of repulsive forces between the wall
and bulk particle when calculating the stress. Consequently, the torque TB in (5.3)
contains contributions only from Brownian motion. The relation between the stresslet
coefficient SB and the particle stress is also made clear in (5.3).

Calculating the effective stress contribution of the rigid fibre requires averaging
(5.3) over the orientation and centre-of-mass distributions. This average is calculated
from the simulations by sampling the distributions at steady state (§ 5.1) and then
from theory at the same level of approximation as used in § 3.1 for predicting the
centre-of-mass distribution (§ 5.2). Results are presented comparing the calculated
value of the total contribution, as well as individual contributions (§ 5.3).
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5.1. Calculation of extra particle stress from simulations

Once the distribution has approached steady state (t > Peγ̇ −1), the instantaneous
value of the particle stresslet from (5.2) is sampled NR times from the simulation
results and averaged,

σ P =
nd

NR

NR∑
l=1

[SB]l , (5.4)

to give the mean expected value for the extra particle stress. Here nd is the number
density N/V . The number of rods in each periodic cell is N = 1, and the volume V

represents the space between the bounding walls at which the bulk particle resides,
rather than the entire volume of the periodic cell. Calculating this volume while
accounting for the bumpy walls gives

V = bxbzH − πL3

4A2

NW

2
, (5.5)

where NW is the total number of wall particles. The number density is consequently
N/V = 1.876 × 10−2L−3 in all of these simulations.

Note that the shear stress for the confined flow can be calculated from the simulation
results in two ways: as above from the particle stresslets or by normalizing the total
force acting on the walls in the x-direction by the area. The forces on the wall due to
the fluid in the absence of a particle must be subtracted from the total values in order
to isolate the contribution from the particles. The expected value of the fluid stress
matches within 1.38 % of the result from simulations in the absence of particles and
the mean value of the particle contribution to the shear stress as calculated from the
stresslets, and the wall forces agrees within at least 0.04 % for all cases.

Figure 16(a) shows the total contribution of the particle stress for values of Pe
between 1.2 × 103 and 1.2 × 105; the values of σP

xy have been normalized by ndL
3μγ̇ .

Even at the lowest Pe of 1.2 × 103, for which the particle stress is largest, the
normalized σP

xy is only 8.58 × 10−3, demonstrating the relatively small impact of the

dilute suspension of rods on the overall rheology. The extra particle shear stress σP
xy

can be separated into components,

σP
xy = σPB

xy + σPS
xy , (5.6)

arising from the Brownian torque σPB
xy and the shear flow σPS

xy . Each is generated
independently from (5.3),

σPB
xy =

nd

NR

NR∑
l=1

[−py(TB × pB) · x̂]l (5.7)

and

σPS
xy =

nd

NR

NR∑
l=1

[−SBpxpy]l , (5.8)

and then averaged as described in (5.4). The result for each contribution is shown
in figures 16(b) and 16(c). Not surprisingly since Pe is large, the contribution from
shear exceeds that from the Brownian rotation by orders of magnitude.

5.2. Prediction of extra particle stress using theory

To compare the stress calculation from the simulation as described in the previous
section with the theoretical calculation, the approach of the previous theory
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Figure 16. The extra particle shear stresses for rigid fibres with A = 10 under simple shear flow
between two walls with a gap of H = 6L calculated from simulation (�), simulated orientation
moments (�) and theory (�). Results shown include (a) the total particle stress σP

xy , (b) the

Brownian torque contribution σPB
xy , (c) the shear flow contribution σPS

xy and (d ) the additional

contributions due to presence of the wall σPW
xy .

(Park et al. 2007) which uses the approximate linearized Green’s function is applied
directly to calculate the stress using (5.3). For the Brownian torque, the expression as
given in (3.6) is used. The explicit result for the stresslet coefficient is given by

SB = − πμL3γ̇

6 ln(2A)
pxpy − λ(ry)

[
2pypB +

(
p2

y − 1
)
ŷ
]

· FB, (5.9)

where the first term is the direct contribution of the shear flow. Upon substitution of
(3.6) for the Brownian force,

SB = − πμL3γ̇

6 ln(2A)
pxpy + kBT λ(ry)

[
2pypB +

(
p2

y − 1
)
ŷ
]

· ∂ ln Ψ

∂rB

, (5.10)

it becomes clear that the second term is related to the gradient in the centre-of-
mass distribution which is created by the hydrodynamic interaction of the rod and
bounding walls.
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Replacing TB and SB in (5.3) with (3.6) and (5.10) gives an expression for the
stresslet,

SB = kBT pB (I − pBpB) · ∂ ln Ψ

∂pB

+
πμL3γ̇

6 ln(2A)
pxpy

(
pBpB − 1

3
I

)

− kBT λ(ry)

(
pBpB − 1

3
I

)[
2pypB +

(
p2

y − 1
)
ŷ
]

· ∂ ln Ψ

∂rB

, (5.11)

which must be averaged to give the mean stress. The average is performed over the
expected configuration in the system of volume V ,

σ P = nd

∫ ∫
Ψ SB dpB drB. (5.12)

By factorizing the distribution function Ψ = nψ under the same assumption that
orientation distribution is not influenced by the wall and equilibrates faster than n,
this equation is completed in terms of the ensemble average over the orientation
distribution ψ ,

σ P

ndL3μγ̇
=

4π

Pe ln(2A)
(3〈pBpB〉 − I) +

π

6 ln(2A)

(
〈pxpypBpB〉 − 1

3
I〈pxpy〉

)

+
4π

Pe ln(2A)

∫
nλ(ry)

∂ ln n

∂ry

dry

[
〈pBpB〉 + I

(
〈p2

y〉 − 1

3

)
− 3〈p2

ypBpB〉
]

(5.13)

The first two contributions correspond to those of a dilute system of Brownian fibres
in an unbounded flow as derived by Hinch & Leal (1976). The first represents the
affect of the Brownian torque on the effective stress, which vanishes at high Pe in
comparison to the second term representing the effect of the shear flow. The third term
in (5.13) is a contribution to the effective stress from the non-uniform distribution of
the centre of mass of the rods caused by the migration.

The shear stress component (xy) of σ P can be evaluated as a function of Pe
from (5.13), using the analytical expression obtained in § 3 for n

(
ry

)
and numerically

integrating λ(ry)∂n/∂ry over the channel height. The results are plotted in figure 16(a).
The additional contribution from the inhomogeneous distribution is labelled σPW

xy (the
third term in (5.13)) and is small as seen in figure 16(d ).

5.3. Comparison of stress calculations

Figure 16(a) shows that the effective particle stress as calculated from the simulation
results, and the theoretical description closely agree. The close agreement, given the
small contribution from the inhomogeneous distribution in the theory, implies that
the effective particle stress is close to that of a dilute suspension of Brownian fibres
in the absence of bounding walls.

To investigate the effects of the bounding walls, as well as periodic images, on the
results calculated from the simulations, we calculate the dilute contribution evaluated
directly from the simulations. The contribution from the Brownian torque, given by

σPB
xy

ndL3μγ̇
=

12π

Pe ln(2A)
〈pxpy〉, (5.14)

is calculated using the moment of pxpy as sampled from the simulations and averaged
over the channel height. The result, plotted in figure 16(b), shows that the dilute
contribution is slightly lower than the value calculated directly from the simulation.
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Likewise, figure 16(c) shows the contribution from the shear for which the value

σPS
xy

ndL3μγ̇
=

π

6 ln(2A)
〈px

2p2
y〉 (5.15)

was calculated from the orientation moments extracted from the simulation. The
result is only slightly lower than the prediction made directly from the simulation
results as given by (5.8).

The difference in the total particle stress from the simulations as given by (5.6)
and the dilute value as calculated from the orientation moments produced by the
simulations by combining (5.14) and (5.15) is given in figure 16(d ). This quantity
represents the additional stress due to the walls, inhomogeneous distribution for the
centre of mass and interactions with the periodic images. Figure 16(d ) shows that the
value predicted from the theory for the contribution beyond that of a dilute suspension
in the absence of walls is much smaller than that predicted by the simulations.

The lack of agreement shown in figure 16(d ) clearly arises from the approximations
made within the theory for the Green’s functions. The theory predicts an additional
contribution to the stress from the presence of the inhomogeneous distribution
but does not fully account for the reduction in the stresslet coefficient due to direct
interactions with the bounding walls and other mechanisms. Improved approximations
for the evaluation of the Green’s function could improve the agreement with the
simulation results.

That the presence of walls can affect the rheology of suspension systems is a
well-known result (Happel & Brenner 1965). For the specific case of Brownian rods,
Schiek & Shaqfeh (1995) calculated the stress for a bound suspension at low values
of Pe using a non-local theory and accounting for the excluded volume but not
hydrodynamic interactions which alter the probability distribution. The increasing
confinement of the rods reduced the effective viscosity further as compared to an
unbounded suspension. The analysis presented in (5.1)–(5.3) is based upon a local
approximation but does account for the dependence of the stress upon the position
of the rod. For the conditions studied here, the difference between the bounded and
unbounded results is about 2 % at best. A direct investigation of the dependence of
the stress upon particle position is given in figure 17, which shows the instantaneous
value of the effective particle stress as calculated from the simulations normalized
by the dilute value for two different orientations. The particle stress is only about
1 % higher than the unbounded value at ry = 0.5L and vanishes to less than 0.3 %
of the value at the centre. Only a small amount of additional stress is found to exist
even for particles very near a wall; consequently the fact that the average particle
stress closely matches the dilute values is not surprising at high Pe at which the
particle migrates away from the bounding walls. The limited effect of the walls on the
rheology of dilute suspensions of rods has been noted by others (Attansio et al. 1972;
Ganani & Powell 1985; Petrie 1999; Moses, Advani & Reinhardt 2001; Zurita-Gotor,
B�lawzdziewicz & Wajnryb 2007).

6. Conclusions
Detailed comparisons with simulations demonstrate that an extended version of

the kinetic theory of Park et al. (2007) can adequately predict the centre-of-mass
distribution for a rigid fibre suspended between two plane walls in either simple shear
or parabolic flow of sufficiently high strength or Pe. For these large Pe, the good
agreement validates that the multiple approximations made in the theory do not have
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Figure 17. The particle shear stresses σP
xy(ry) for a rigid fibre with φ = 3◦, 18◦, pz = 0 and

A = 10 in a gap of H = 6L, normalized by the theoretical values with the same configurations
in unbounded flow, as functions of a distance from a wall, ry/L. Calculations are from the
simulation with simple shear flow with a force and torque-free fibre.

a severe adverse affect upon the predictions for the conditions studied. The success
of the theory at high rates of shear is due to the hydrodynamic interaction lifting the
particles a significant distance from the wall, where the lack of quantitative differences
in the instantaneous prediction of the lift velocity are small (§ 4), and the particle
orientation distribution conforms to that of an unbounded flow (figures 13 and 15).

The theory cannot be applied with confidence if Pe � 1.2 × 103 for the case studied
here of A = 10 and H = 6L. The steric interactions between the rod and bounding
walls, which are ignored in the current version of the kinetic theory, control the
thickness and shape of the depletion layer at these lower rates of shear at which
the hydrodynamic lift force is too weak to move the particle out of range of the
wall. A theory capable of making accurate predictions over a wider range Pe should
include the steric interactions as done in previous investigations (de Pablo et al. 1992;
Hijazi & Khater 2001).

Simulations presented in the current work were limited to the conditions of A = 10
and H = 6L. The theory, which relies on a superposition of the Green’s function for
plane walls, will become continually less accurate as the gap width H becomes smaller
with regard to the particle length L. Simulations of the migration of flexible polymers
(Usta et al. 2007) indicate that theoretical predictions for the rigid rod distribution
would be greatly in error for H � 5L. Conversely, the theory is expected to become
more accurate as the ratio H/L increases, and comparisons with simulations of
Saintillan et al. (2006a) on parabolic flow suggest that the hydrodynamic lift force
remains of importance at lower Pe within larger channels, again conforming to
expectations.

The bounding walls alter the particle contribution to the total stress little as
compared to the dilute values in an unbounded system owing to the strong migration
away from the bounding walls at high Pe. Differences between evaluations of the
particle stress from the simulations and a theoretical calculation at the same level of
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approximation used to predict the distribution are attributable to the approximate
evaluation of the Green’s function and can likely be improved upon.

This simulation method will be extended to study the rheology and structure
with semi-dilute and concentrated systems of rods at high Pe. Previous simulations,
such as those of Sundararajakumar & Koch (1997) and Pryamitsyn & Ganesan
(2008), examined the rheology of unbounded shear flow. The net migration caused by
hydrodynamic interaction with the walls in a non-dilute system would be expected
to alter the microstructure, which is directly related to the rheological properties
(Shaqfeh & Fredrickson 1990; Dhont & Briels 2003). The results may be useful in
explaining the shear thinning behaviour observed for semi-dilute suspensions of fibres
at high Pe (Ganani & Powell 1985; Chaouche & Koch 2001; Bricker, Park & Butler
2008).

This work was supported by the National Science Foundation through a CAREER
Award (CTS-0348205).

REFERENCES

Agarwal, U. S., Dutta, A. & Mashelkar, R. A. 1994 Migration of macromolecules under flow:
the physical origin and engineering implications. Chem. Engng Sci. 49, 1693–1717.

Asokan, K., Ramamohan, T. R. & Kumaran, V. 2002 A novel approach to computing the orientation
moments of spheroids in simple shear flow at arbitrary Péclet number. Phys. Fluids 14, 75–84.

Attansio, A., Bernini, U., Gallopo, P. & Segre, G. 1972 Significance of viscosity measurements
in macroscopic suspensions of elongated particles. Trans. Soc. Rheol. 16, 147–154.

Ausserre, D., Edwards, J., Lecourtier, J., Hervet, H. & Rondelex, F. 1991 Hydro-dynamic
thickening of depletion layers in colloidal solutions. Europhys. Lett. 14, 33–38.

Batchelor, G. K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow.
J. Fluid Mech. 44, 419–440.

Batchelor, G. K. 1971 The stress generated in a non-dilute suspension of elongated particles by
pure straining motion. J. Fluid Mech. 46, 813–829.

Beenakker, C. W. J. 1986 Ewald sum of the Rotne–Prager tensor. J. Chem. Phys. 85, 1581–1582.

Blake, J. R. 1971 A note on the image system for a Stokeslet in a no-slip boundary. Proc. Cambridge
Phil. Soc. 70, 303–310.

Brenner, H. 1974 Rheology of a dilute suspension of axisymmetric Brownian particles. Intl
J. Multiphase Flow 1, 195–341.

Bricker, J. M. & Butler, J. E. 2007 Correlation between structures and microstructures in
concentrated suspensions of non-Brownian spherical particles subject to unsteady shear flows.
J. Rheol. 51, 735–759.

Bricker, J. M., Park, H.-O. & Butler, J. E. 2008 Rheology of semidilute suspensions of rigid
polystyrene ellipsoids at high Péclet numbers. J. Rheol. 52, 941–955.

Butler, J. E. & Shaqfeh, E. S. G. 2002 Dynamic simulations of the inhomogeneous sedimentation
of rigid fibers. J. Fluid Mech. 468, 205–237.

Butler, J. E. & Shaqfeh, E. S. G. 2005 Brownian dynamics simulations of a flexible polymer
chain which includes continuous resistance and multibody hydrodynamic interactions.
J. Chem. Phys. 122, 01491.

Butler, J. E., Usta, O. B., Kekre, R. & Ladd, A. J. C. 2007 Kinetic theory of a confined polymer
driven by an external force and pressure-driven flow. Phys. Fluids 19, 113101.

Chaouche, M. & Koch, D. L. 2001 Rheology of non-Brownian rigid fiber suspensions with adhesive
contacts. J. Rheol. 45, 369–382.

Chen, S. B. & Jiang, L. 1999 Orientation distribution in a dilute suspension of fibers subject to
simple shear flow. Phys. Fluids 11, 2878–2890.

Chen, S. B. & Koch, D. L. 1996 Rheology of dilute suspensions of charged fibers. Phys. Fluids 8,
2792–2807.

Claeys, I. L. & Brady, J. F. 1989 Lubrication singularites of the grand resistance tensor for two
arbitrary particles. Physico-Chem. Hydrodyn. 11, 261–293.



Inhomogeneous distribution of a rigid fibre 297

Cobb, P. D. & Butler, J. E. 2005 Simulations of concentrated suspensions of rigid fibers: relationship
between short-time diffusivities and the long-time rotational diffusion. J. Chem. Phys. 123,
054908.

Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory.
J. Fluid Mech. 44, 791–810.

Dhont, J. K. G. & Briels, W. J. 2003 Inhomogeneous suspensions of rigid rods in flow. J. Chem.
Phys. 118, 1466.

Doi, M. & Edwards, S. F. 1986 The Theory of Polymer Dynamics . Oxford University Press.

Fang, L., Hu, H. & Larson, R. 2005 DNA configuration and concentration in shearing flow near
a glass surface in a microchannel. J. Rheol. 49, 127.

Fixman, M. 1978 Simulation of polymer dynamics. Part 1. General theory. J. Chem. Phys. 69,
1527–1537.

Ganani, E. & Powell, R. L. 1985 Suspensions of rodlike particles: literature review and data
correlations. J. Composite Mater. 19, 194–215.

Grassia, P. S., Hinch, E. J. & Nitsche, L. C. 1995 Computer simulations of Brownian motion of
complex systems. J. Fluid Mech. 282, 373–403.

Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics . Prentice Hall.

Harlen, O. G., Sundararajakumar, R. R. & Koch, D. L. 1999 Numerical simulation of a sphere
settling through a suspension of neutrally buoyant fibers. J. Fluid Mech. 388, 355–388.

Hasimoto, H. 1959 On the periodic fundamental solutions of the Stokes equations and their
application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317–328.

Hernández-Ortiz, J. P., de Pablo, J. J. & Graham, M. D. 2006 Cross-stream-line migration in
confined flowing polymer solutions: theory and simulation. Phys. Fluids 18, 123101.

Hijazi, A. & Khater, A. 2001 Brownian dynamics simulations of rigid rod-like macromolecular
particles flowing in bounded channels. Comput. Mater. Sci. 22, 279–290.

Hijazi, A. & Zoaeter, M. 2002 Brownian dynamics simulations of rigid rod-like particlesin dilute
flowing solution. Eur. Polym. J. 38, 2207–2211.

Hinch, E. J. & Leal, L. G. 1972 The effect of Brownian motion on the rheological properties of
suspension of non-spherical particles. J. Fluid Mech. 52, 683–712.

Hinch, E. J. & Leal, L. G. 1976 Constitutive equations in suspension mechanics. Part 2. Approximate
forms for a suspension of rigid particles affected by Brownian rotations. J. Fluid Mech. 76,
187–208.

Hoda, N. & Kumar, S. 2007a Brownian dynamics simulations of polyelectrolyte adsorption in
shear flow with hydrodynamic. J. Chem. Phys. 127, 234902.

Hoda, N. & Kumar, S. 2007b Kinetic theory of polyelectrolyte adsorption in shear flow. J. Rheol.
51, 799–820.

Hoda, N. & Kumar, S. 2008 Brownian dynamics simulations of polyelectrolyte adsorption in shear
flow: effects of solvent quality and charge patterning. J. Chem. Phys. 128, 164907.
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